Homework \#3 Math 518

Due in class Wednesday, September 14, 2011

1. Let M be a manifold, $p \in M$ a point and $v \in T_{p} M$ a tangent vector at the point p. Show that there is a curve $\gamma: I \rightarrow M$ (where I is an open interval containing 0) with $\gamma(0)=p$ and $\dot{\gamma}(0)=v$. Hint: Why is it true for $M=\mathbb{R}^{n}$?

2(a). Prove that if $F: M \rightarrow N$ is a diffeomorphism, then for any $p \in M$ the linear map $d F_{p}: T_{p} M \rightarrow T_{F(p)} N$ is an isomorphism.

2(b). Prove that if

$$
d(\operatorname{det})_{I}: T_{I} G L(n, \mathbb{R}) \rightarrow T_{1} \mathbb{R} \simeq \mathbb{R}
$$

is onto then so is

$$
d(\operatorname{det})_{A}: T_{A} G L(n, \mathbb{R}) \rightarrow T_{1} \mathbb{R}
$$

for any matrix A with $\operatorname{det} A=1$. Hints: part (a) and an exercise from Homework 1 may be useful; drawing a commuting triangle of maps may also be helpful.

2(c) Prove that the differential $d(\operatorname{det})_{I}$ is the trace. Use this to prove that $d(\operatorname{det})_{I}: T_{I} G L(n, \mathbb{R}) \rightarrow$ $T_{1} \mathbb{R}$ is onto. Now prove that 1 is a regular value of $\operatorname{det}: G L(n, \mathbb{R}) \rightarrow \mathbb{R}$.

